from the target object. The ultrasound image forming unit 110 may be further configured to form a three-dimensional ultrasound image of the target object based on the received ultrasound echo signals. [0018] FIG. 2 is a block diagram showing an illustrative embodiment of an ultrasound image forming unit 110. The ultrasound image forming unit 110 may include a transmit (Tx) signal generating section 111, an ultrasound probe 112 including a plurality of transducer elements (not shown), a beam former 113, an ultrasound data forming section 114 and an image forming section 115. [0019] The Tx signal generating section 111 may generate Tx signals according to an image mode set in the ultrasound system 100. The image mode may include a brightness (B) mode, a Doppler (D) mode, a color flow mode, etc. In one exemplary embodiment, the B mode may be set in the ultrasound system 100 to obtain a B mode ultrasound image. [0020] The ultrasound probe 112 may receive the Tx signals from the Tx signal generating section 111 and generate ultrasound signals, which may travel into the target object. The ultrasound probe 112 may further receive ultrasound echo signals reflected from the target object and convert them into electrical receive signals. In such a case, the electrical receive signals may be analog signals. The ultrasound probe 112 may be a three-dimensional probe, a two-dimensional probe, a one-dimensional probe or the like. [0021] FIG. 3 is an illustrative embodiment of an ultrasound probe 112. At least one transducer element (not shown) of the ultrasound probe 112 generates an image plane IP, which is used to scan a region of interest ROI. The image plane IP may be one of slice planes of the threedimensional ultrasound image. The sensor 120 is attached to the housing of the ultrasound probe 112 to determine the position and orientation of the image plane IP. The ultrasound system 100 coupled with the ultrasound probe 112 via the probe cable 105 can use the data generated by the sensor 120 to determine the position and orientation of the sensor **120** and/or the image plane IP, as described below. [0022] In this preferred embodiment, the sensor 120 is a magnetic sensor that monitors the free-hand movement of the ultrasound probe 112 in six degrees of freedom with respect to a transducer element 170. As shown in FIG. 3, the sensor 120 and the transducer element 170 each define an origin (122, 172, respectively) defined by three orthogonal axes (X', Y', Z' and X'', Y'', Z'', respectively). The sensor 120 monitors the translation of the origin 122 with respect to the origin 172 of the transducer element 170 to determine position and monitor the rotation of the X', Y', Z' axes with respect to the X'', Y'', Z'' axes of the transducer element 170 to determine orientation. [0023] The position and orientation of the sensor 120 can be used to determine the position and orientation of the image plane IP. As shown in FIG. 3, the image plane IP defines an origin OR defined by three orthogonal axes X, Y, Z, which are preferably aligned with the origin of a center acoustic line generated by the ultrasound probe 112. The position of the origin 122 and the orientation of axes X', Y', Z' of the sensor 120 may not precisely coincide with the position of the origin OR and the orientation of the axes X, Y, Z of the image plane IP. For example, in FIG. 3, the origin OR of the image plane IP is offset from the origin 122 of the sensor 120 by a distance z_0 along the Z-direction and a distance of y_0 along the Y-direction. In FIG. 3, there is no offset along the X-direction nor is there a rotational offset in the orientation of the axes. Accordingly, the position and orientation of the sensor 120 do not directly describe the position and orientation of the image plane IP. [0024] To determine the position an orientation of the image plane IP from the position and orientation of the sensor 120, sensor calibration data is used to transform the position and orientation of the sensor 120 to the position and orientation of the image plane IP. For simplicity, the term "position and orientation" is used to broadly refer to position and/or orientation. Accordingly, if the sensor 120 has the same orientation as the image plane IP, then the position and orientation calibration data may not contain any orientation calibration data. Similarly, as shown in FIG. 3, the sensor 120 may not have a positional offset with respect to one or more axes of the image plane IP. [0025] There are a number of ways of defining the image plane/sensor offset. One method of calibrating at least some types of sensors use three orthogonal linear dimension offsets in X, Y, Z and three rotation angles about each of these axes. Other methods include using a position transformation matrix or quaternions, which are described in the user manual for the mini BirdTM and the Flock of BirdTM systems by Ascension Technology Corp. [0026] As described above, the ultrasound probes with position and orientation sensors are typically used only with ultrasound systems that contain the calibration data for the probe/sensor pair. Conventionally, the probe/sensor pair is calibrated, and the calibration data is stored in the ultrasound system 100, which will be used in conjunction with the probe/sensor pair. If the probe/sensor pair is to be used with a different ultrasound system, then the probe/sensor pair typically needs to be re-calibrated on that different ultrasound system. Since sonographers are often unable or unwilling to perform probe/sensor pair calibration, probe/sensor pairs are often used only with the ultrasound system for which the probe/sensor pair was initially calibrated. [0027] Referring back to FIG. 2, the beam former 113 may convert the electrical receive signals outputted from the ultrasound probe 112 into digital signals. The beam former 113 may further apply delays to the digital signals in consideration of the distances between the transducer elements and focal points to thereby output receive-focused signals. [0028] The ultrasound data forming section 114 may form a plurality of ultrasound data by using the receive-focused signals. In one embodiment, the plurality of ultrasound data may be radio frequency (RF) data or IQ data. The image forming section 115 may form the three-dimensional ultrasound image of the target object based on the ultrasound data. [0029] Referring back to FIG. 1, the sensor 120 may be mounted on one side of the ultrasound probe 112. In one embodiment, by way of non-limiting examples, the sensor 120 may be built in the ultrasound probe 112 to be away from the plurality of transducer elements (not shown) by a predetermined distance. Alternatively, the sensor 120 may be externally mounted on the ultrasound probe 112 to be away from the plurality of transducer elements. The sensor 120 may include three-dimensional sensor, which can detect a three-dimensional position and an angle of the ultrasound probe 112. [0030] The memory 130 may store a three-dimensional CT image of the target object. In one embodiment, by way of non-limiting examples, the three-dimensional CT image